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Computing Technique Using ANNs for Optimal Scheduling of
Hydrothermal Power Systems with Inclusion of Pump-Storage Plants

Mohamed Moenes SALAMA
Electrical Engineering Dept., Faculty of Eng. (Shoubra),
108 Shoubra Street, Cairo. Egypt.

Abstract
The paper deals with the application of the technology of the
artificial neural networks (ANNs) on a power system to obtain the
optimal scheduling of generation. The presented hydrothermal
power system (HTPS) contains pump-storage plants (PSPs) besides
the thermal plants (TPs) and hydro-plants (HPs). Given the system
load in each time interval of the optimization period in addition
to the decision variables (DVs) of TPs and HPs moreover of PSPs
for both operation conditions (generating or pumping), the most
economical generation of each power plant can be evaluated. Also,
the generated power by PSPs in each generation operation or the
power taken by these plants in each pump operation will be
predicted. Estimation of the corresponding optimal generation
cogt of the TPs is occurred. The computing technique can
n

determine the available water volume of HPs and of PSP=. ANNs

have been designed and trained with patterns of input and output
data at different values of training parameters. Agreeable

results have been obtained and presented.

Keywords
Optimal scheduling, Short-range optimization, Optimal hydro-
thermal operation, Artificial Neural Networks, Pump-storage power

plants.

1. Introduction

Power systems are interconnecting for purposes of economy inter-
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change and reduction of reserve capacity. Economic operation of
power systems deals with the means and techniques for achieving
minimum operating cost to supply a given predicted load. Any
deviation from the optimum loading would result in an increase in
fuel input and consequently in the generation coszt. The optimal
operation of thermal power systems has been discussed in Refs.
{61, (81, [15] and [18]1, while it has been presented in Refs. [1-
51, [11-14] for the HTPSs. DVs of the generating units must be
estimated from unit commitment study taking into consideration
the optimal generation costs with fullfilment of the operation
constraints ([7-10]., [16] and [17]. To estimate DVs of PSPs in
each time interval, the additional generation cost in pump
operation and the costs that can be saved by setting the plants

in generation operation must be evaluated and compared [147.

The maximum principle method (MPM) by Pontrvagin [2]1. [41, [13]
and [14] has a wide range of application in the area of the
optimization problem side by side with the gradient methods [15],
calculus variations and dynamic programming (11, [7]1 and [167.
The most important advantage of MPM is defining of the solution
for TPz and HPs which operate at points or limits of

discontinuity.

Artificial intelligence techniques and ANNs are widely used in
the area of the power systems and they represent efficient
alternatives for unit commitment {191, voltage stability
assessment ([21], [29] and for the thermal-rating computation of
the transmission lines [28]. The ANNs have been applied also for
the load forecasting [22], ([25], contingency analysis [23] and
for the optimal operation of hydro-steam power systems [30].
Using of ANNs has an increasing attention due to their gross
capability, rapidity and validity for on-line operation.

MPM has been applied in Ref.[14] on a HTPS containing a PSP and
the obtained results have been used in this work for training of
the suggested artificial neural networks (SANNs). Feed-forward
multi-layered networks with the generalized delta rule and back
propagation of error will be designed to obtain continuocus

planning between their input and output data.

110



International Conference on Modeling and Simulation MS'2000  11-14 Aprit 2000, Calro, Egypt

2. Economic Dispatch Of Hydrothermal Generation With PSPs
The aim of the objective function of a power system contains W
TPs, M of HPs in addition to P of PSPs is to minimize the total

generation cost (TGC) over the optimization time period that will
&

n

d into N time intervals. In each time interval n, TGC i

o

1
equal to the sum of the generation cogts Fijp(Pip) of each plant

Where Pj, is the generated power of each thermal unit i in the
interval n and Aty is the length of this time interval.
Fin{Pip} can be ocbtained in terms of the corresponding generation

Pin and the cost constants Aj, By and C; az follows
2 - :
Fin(Pin) = Af Pip~ + Bj Pip + Cj (2)

Till the time interval n, the thermal generation cost FT(N) can
be predicted by

Fr™ - pr® D oW p ey agg (3)
1

n each time interval, the sum of the output Pj, of each plant of
TP=s and Pjn of each HP in additicon to the output pgn of each PSP
in generating operation PG must be equal to the load demand PRy
plug the sum of the consumed power Ppn of each PSP in pump

operation PP moreover the transmission losses of the system PL,.

= 3=

p=1

[N

Z
g=1

The basic control variables (BCVs). which are Pjn, Pjp. Pgp.
Ppn. the water volumes Vj,, Vg and Vpp of each HP and PSP in
generation or pump operation, respectively, must satisfy in each
time interval n the following inequality constraints. In other

words, each BCVs must not violate each corresponding maximum and

minimum limits (P, V and P, V).
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B % Pan S 5 (5)

B3 % P % E (6)

L5 & Vip = ‘7_] (97

Lo = Vgn = Vg (10)

fp = Ven = Vo (11)
Where Vg = ¥p and ﬁg _ ?p

The inequalities (5)-(11) can be converted to equality cons-
traints by using the method of Valentine in calculus variations,
{14}, 1in terms of the additional control variables (ACVs) as

given in Eq.(12), which is corresponding to the inequality (5).

-

(Pi = Pip) (Pig - Pq) — Xgip” = © (12)

Where X145 1s an additional control variable.

. n . . )
The water volume Vg ) of HPs, 1in each time interval n, can be

deduced from the corresponding volume to the previous interval

. {n-1)

% as follows

.y .
Viinf _ Vj{n CDEN AVip - Y3 Pip ¢

o
[ ]

Where AVi, 1s the additional volume of the plant j in the

interval n,. Y; 1s a constant that relats between the drowdown

volume and the generated power of that plant Pin-

The water volume Vg{n) and Vp(n) of PSP for both generation or

pump operation will be obtained by the following equations in

terms of their constants Yg and Yp, respectively.

(n} _ , (n-1)

{n)

_ (n—1}
Vp = Vp + Yp Ppp (15)
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The Hmiltonmian functio H(n) can be constructed in each time
interval n, as
H{n} _ Z{n} [ FT(n«l} % E_W Fin(Pip) Atp I
i=1
1y R [%z Kin Pin *t %fl Kjn Pjn + %ii Kgn Pgn = PBn = FPln
_ %ii Kpn Ppnl
+ %fl Kip Lzi'™ ((P; - Pin) (Pip - Bi) - X1in° )
+ %fl Kin La;™ [(F5 - Psp) (Pyn — Bj) - X2n°]
s ;fl Kip Las ™ (@5 - Vin) (Vip - ¥§) - X33p°]
# %fi Byn By v v - avyy v g Pyl
+ ?if Kgn Log™ [(Fg - Pgn) (Pgn - Bg) - Xagn]
- %i? Kgn L7g™ [(Tg - Vgn) (Vgn - ¥g) - X5gn°]
+ gii Kgn Lag ™ Vg™ - vg" M+ vg Pgp
+ %ii Kpn Lop™ [(Pp - Ppn) (Ppn - Pp) - Xepn']
¥ gii Kpn Liop ™ [(¥p = Vpn) (Vpn = ¥p) - X7pn" ]
¥ %ii Kpn L11p ") (V™ = vp T - v Py (16)
Where Z{n) iz a wvariable wvector, all wvalues of L are
multiplicators to include the operation constraints 1in H{ﬁ) and

all values of X are ACVs; Kjp. Kjn. Kgn

113
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HPs and of PSPs in generation or pump operation, respectively.

DVs are obtained from unit commitment by ranking the plants in
optimal 1list that fullfills requirements within given available
facilities. Each variable of DVs must equal 1 when the plant is

in operation and equals 0 if the plant is out of operation.

Te solve the problem by using MPM by Pontrvagin, H(n} must hbe
maximized and their first derivatives with respect to BCVs and
ACVs in addition to the variable vector and multiplicators must
be equal =zero. A nonlinear equations system will be resulted.
Newton-Raphson method is applied to convert the nonlinear system
to a linear system that can be solved by Gauss-Jordan method to

obtain the control variables.

3. Neural-Network Technology

The back propagation learning algorithm will be used for feed-—
forward networks, in which the information passes through the
intermediate layers from the input layer (IL) to the output layer
{CL) using transfer functions and summation. The information will
be propagated back through the network during the learning
operation to update the connection weights (CWs), which are
connected between the consecutive layers. All biases of the
hidden layer (HL) and OL must be also updated [201, [24], [26]
and [Z71. The output of each neuron in IL equals to its input
But for HL and OL, the input X5 and output Y;j of each neuron can
be given 1in terms of the biases bj and threshold Z5 of the
neurcns as follows

£ =%  Wijj Yi + bj (17)

~(X5+Z )
Yj=1/[1+e 2 777

(18)
Where wjj; are CWs between the neurons in a layer and the neurons
in the previous layer of output Yi.

By applying the generalized delta rule, the weights wygi and Wii.
which are connected between OL and HL, also between HL and IL,

respectively. must be modified by
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And
Awjij(p) = n &5(p) Yi(p) + a Awjj(p-1) (20)
Where,
Ex(p) = [Ygg - Yr(p)1l Yr(p) [1 - Yr(p)] (21)
Nk
Si(p) = Yi;(p) [1 - Y;(p)] §=Nj+1 Sk (p) Wk (22)

Where Nj, Ny are the total number of neurons tell HL and OL,
respectively, p 1s the pattern number, it varies between 1 and
the total number of patterns Np, Ygq is the desired output of
neurcn k, n is the learning rate and @« is the momentum constant.
The values of n and « are between 0 and 1.

The range of the input and output of ANNs must be within 0 and 1
to avoid saturation caused by the sigmoidal function. Therefore,

before the starting of the training. the data must be normalized.

4. Application of Neural-Network Technology on the optimal
Scheduling of HTPSs
The presented power system consists of 4 TPs, one HP and one
PSP. MPM was applied to obtain BCVs of the optimal scheduling of
the system in Ref.[14] and the obtained results will be used to
Lrain the suggested artificial networks (SANN1) and (SANNZ).

4.1 Topolpgy of SANN1

Fig. (1) illustrates the first network SANN1l. Number of neurons
of IL 1s NI = 8, number of neurons of HL is NJJ = 9, number of
neurons of OL is NKK = 10, the total number of connection weights
NW = 162 and the total number of biases NB = 19.

4.2 Input and output data of SANN1

Number of the variables which are used as input data of the
network is 8 inputs, which are DVs of the four TPs, K1-K4, and of
the hydro plant, KS, besides of PSP for generating operation, KG,
or for pump operation, KP, in addition to the received power by
the system load PL. The network is trained to give 10 outputs :-
- Powers of TPs, P1-P4, - Power of the hydroplant, PS,
- Power of PSP in generating or pump operation, PG or PP,
- Water volumes of the hydro plant, WS, and of P3P, WP, and

|

The total generation cost TGC.
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Fig. (1) The first suggested artificial neural network SANN1
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Number of the used trainin-patterns (NP) for the input and output
data is 45 pattern and the number of the test patterns (NT) is 5.

4.3 Initialization of the input and output data

DVs of all plants are already initialized because their values
are equal 1 or 0. The other inpuf and output variables are
initialized by division of each value by the corresponding

maximum value as indicated afterwards in the presented tabels.

4.4 Topology of SANN2 with removal of PSP

When PSP is removed from the system, a new network will be
designed and trained by corresponding results after removing the
plant data. Then, NI = 6, NJJ =6 , NKK = 7 , NW = 78 , NB = 13,

5. Results

The training patterns of the input and output data for SANN1
are given in Table 1 and Table 2, respectively. Table 3 and Table
4 show the test patterns of the input and output data of that

networlk.

Table 1 The ftraining patterns of the input data for SANN1

n K1|K2|K3|K4!KS|KP|KG PL

Max. valuej1 1 11 {1 {1 {1 11 800 Mw
1 - 4 11 {1 {0 10 |1 ]o0 0.2500
5~ 8 111 41 11 10 11 10 0.3500
9 - 11 141 1 1 {0 1 i0 0.4750
12 141 411 411 10 10 i1 0.7125
13 - 15 141 {1 11 {0 {0 i0 0.7125
16 - 19 141 41 11 41 {0 1 0.8750
20 - 27 1 71 {1 1 11 0 |1 1.0000
28 1 41 41 41 1 11 10 0.7500
29 1 ¢1 j1 11 11 10 10 0.7500
30 1 11 41 11 11 11 10 0.7500
31 —35 1 411 j1 {1 {0 {0 11 0.7500
36 - 38 1431 41 41 41 0 j1 0.9500
38 - 42 1 (1 41 |1 10 {1 |0 0.4625
43 - 45 1471 i1 11 10 11 {0 0.3500
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The obtained values of CWs between IL and HL are given in the
following matrix.

0.17 0.i7 0.17 0.17 0.17 0.17 0.17 0.17 0.17
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
-0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13
1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39
-0.98 -0.98 -0.98 -0.98 -0.98 -0.98 ~-0.98 -0.98 -0.98
1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66
~0.44 -0.44 ~-0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44
L~3.83 -3.83 -3.83 -3.83 -3.83 -3.83 -3.83 -3.83 ~-3.83

The obtained values of CWs between HL and OL are given by
0.2 -2.6 -1.82 -0.12 -5.97 4.16 -5.66 0.0 -0.4 -0.24
0.2 -2.6 -1.82 -0.12 -5.97 4.16 -5.66 0.0 -0.4 -0.24
0.2 -2.6 -1.82 -0.12 -5.97 4.16 -5.66 0.0 -0.4 -0.24
0.2 -2.6 -1.82 -0.12 -5.97 4.16 -5.66 0.0 -0.4 -0.24
0.2 -2.6 -1.82 -0.12 -5.97 4.16 -5.66 0.0 -0.4 -0.24
0.2 -2.6 -1.82 -0.12 -5.97 4.16 -5.66 0.0 -0.4 -0.24
0.2 -2.6 -1.82 -0.12 -5.97 4.16 -5.66 0.0 -0.4 -0.24
0.2 -2.6 -1.82 -0.12 -5.97 4.16 -5.66 0.0 -0.4 -0.24
0.2 -2.6 —-1.82 -0.12 -5.97 4.16 -5.66 0.0 -0.4 -0.24

The obtained values of the biases of HL are [ O.
0,72 ¢.72 8.72 0.72 0.72 6.72 1. and of the OL
14.26 0.98 8.94 -14.32 14.10 3.04 7.23 1.02 ].

The obtained results of the output data are tabulated in Table 5
(%MAS) 6.154 number of
required iterations for the network convergence is IN 2319 and
training rate n 0.4
The obtained reslts of the output data by SANNZ,

72 0.72 0.72
are [ 5.59 21.39

with percentage mean absclute error

0.4 and momentum constant o
after training
it by the corresponding data after removal of PSP for the same
of the system load PL, 6 with %MAS
IN 2548 n
When P3P is removed,.
the

values

5.387,

are given in Table

0.1 and « 0.8

it can be suggested that, the required data
be by SANN1

for all values of the corresponding data of

of system can obtained training after

substitution zeros

PSP. The obtained data are illustrated in Table 7 with %MAS =
6.173, IN = 922 ., n = 0.8 and a = 0.2
Table 8 shows %MAS and IN, which are obtained by SANNl1 with

including PSP in the hydrothermal power system and when 1t will
be removed by the two networks SANN1 and SANN2 at different

values of the training parameters n and o with accuracy tolerance

-3
g ",

Fo

4 4
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Table 2 Training patterns of the

output data

for SANN1.

e e

I P1 P2 P3 P4 PS PP PG WS WP TGC
1 1.0 1.00 0.71 0.00 0.0 1.0 0.0 0.953 0.981 0.179
2 1.0 1.00 0.71 0.00 0.0 1.0 0.0 0.956 0.983 ©0.179
2 1.0 1.00 0.71 0.00 0.0 1.0 0.0 0.959 o0.985 0.173
4 1.0 1.00 0.71 0.00 0.0 1.0 0.0 0.962 0.989 0.179
|5 1.0 0.43 .26 0.51 0.0 1.0 0.9 0.965 0.988 0.262
I 6 1.0 0.39 0.26 0.31 0.0 1.0, 0.0 0.968 0.990 0.262
| 7 1.0 o. 3 0.26 0.51 0.0 1.0 0.0 0.972 0.992 0.263
8 1.0 0.43 0.26 0.51 0.0 1.0 0.0 0.975 0.993 0.263
9 1.0 1.00 0.49 0.51 0.0 1.0 0.0 0.978 0.995 0.357
10 1.0 1.00 0.49 o0.s31 0.0 1.0 0.0 0.984 0.998 0:.357
11 1.0 1.00 0.49 0.51 9.0 1.0 0.0 0.987 1.000 T
12 1.0 1.00 0.89 0.51 0.0 0.0 1.0 0.991 0.998 0.456
13 1.0 1.00 1.00 o0.60 0.0 0.0 0.0 0.994 0.998 0.585 |
14 1.0 1.00 1.00 0.60 G.0 0.0 0.0 0.997 0.998 0.585
15 1.0 1.00 1.00 0.60 0.0 0.0 0.0 1.000 0.998 0.585 |
16 1.0 1.00 1.00 o0.57 1.0 0.0 1.0 0.995 0.996 0.549 1
17 1.0 1.00 1.00 0.57 1.0 0.0 1.0 0.990 0.994 0.549 |
18 1.0 1.00 1.00 0.57 1.0 0.0 1.0 0.984 g.993 0.549 |
18 1.0 1.00 1.00 0.57 1.0 0.0 1.0 0.979 0.991 0.549 |
20 1.0 1.00 1.00 0.80 1.0 0.0 1.0 0.974 0.989 0.835 |
21 1.0 1.00 1.00 0.80 1.0 0.0 1.0 0.969 0.387 2825 |
22 1.0 1.00 0.51 1.00 1.0 0.0 1.6 0.963 0.985 1.000
23 1.0 1.00 1.00 0.80 1.0 0.0 1.0 0.958 0.9383 0.825
24 1.0 1.00 0.51 1.00 1.0 0.0 1.0 0.953 0.982 1.000
23 1.0 1.00 1.00 0.80 1.0 0.0 1.0 0.948 0.980 0.825
26 1.0 1.00 ¢.s51 1.00 1.0 0.0 1.0 0.942 0.878 1.000
27 1.0 1.00 1.00 0.80 1.0 0.0 1.0 0.937 0.976 0.825
28 1.0 1.00 1.00 0.62 1.0 1.0 0.0 0.932 0.978 0.557
2% 1.0 1.00 0.51 0.67 1.0 0.0 0.0 0.927 0.978 0.8529
30 1.0 1.00 1.00 0.62 1.0 1.0 0.0 0.921 0.979 0.597
31 1.0 1.00 1.00 0.53 0.0 0.0 1.0 0.925 0.978 0.516
32 1.0 1.00 1.00 0.53 0.0 0.0 1.0 0.928 0.976 0.516
33 1.0 1.00 1.00 0.58 0.0 0.0 1.0 0.931 0.974 0.516
34 1.0 1.00 1.00 0.53 0.0 0.0 1.0 0.934 0.972 0.816
33 1.0 1.00 1.00 0.53 0.0 0.0 1.0 0.937 0.970 0.516
36 1.0 1.00 1.00 0.71 1.0 0.0 1.0 0.932 0.968 0.704
37 1.0 1.00 1.00 0.71 1.0 0.0 1.0 0.927 0.967 0.704
38 1.0 1.00 1.00 0.71 1.0 6.8 1.8 p.91p 0.963 0.704

3% 1.0 0.7 0.77 0.51 ©.0 1.0 0.0 0.919 0.965 0.235
40 1.0 0.78 0.5 0.51 0.0 1.0 0.0 0.923 0.966 0.341]
41 1.0 0.78 0.5 0.51 0.0 1.0 0.0 0.926 0.968 0.341]
42 1.0 0.78 0.5 0.51 0.0 1.0 0.0 0.929 0.870 0.341
43 1.0 0.39% 0¢.28 0.51 0.0 1.0 0.0 0.932 0.971 0.262
44 1.0 0.39 "©.2 0.51 0.0 1.0 0.0 0.938 0.975 ¢.282
45 1.0 0.3% 0.2 0.51 0.9 1.0 D.0O 0.942 0.976 0(.262

Table 3 Test patterns of the input data for SAN

I |KIT|K2T|K3T|K4T|KST KPT|KGT| PLT

1 1 bl 1 0 0 L 0 |0.250
2 X 1 1 14 0 1 0 10.475
3 1 1 1 1 1 o 1 16.875
4 1 1 1 1 1 0 1 10.950
S 6 1 1 1 0 1 0 [0.350

N1.
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Table 4 Test patterns of the output data for SANNI.

I |PIT|P2T |P3T |P4T |PST|PPT|PGT| WST WPT TGCT
1 11.0{1.00/0.71/0.00]0.0{1.0{0.0(0.959 0.8985 0.179
2 11.011.00{0.4910.5110.011.0(0.0(0.981 0.997 0.357
3 11.0{1.0011.00/0.57({1.0(0.011.010.995 0.996 0.549
4 11.0{1.0011.00(0.7111.0(0.0(1.0]0.921 0.965 (0.704
5 11.0{0.39{0.28/0.51{0.0{1.0j0.0}0.935 0.873 0.704
Table 5 The obtained results for the test patterns of the
output data by SANNL.
Il P1 P2 P3 P4 PS PP PG W3 wp TGC
111.0 (0.9110.72{0.53]0.00{1.0 (0.0 10.95310.98610.330
2{1.0 [0.6810.4610.52|0.00]1.0 (0.0 |0.95310.983(0.299
3/1.0 (1.00{1.00]0.71{0.9910.0 (1.0 (0.954{0.999{0.705
411.0 |1.00}1.00(0.72{1.00/0.0 |1.0 {0.954(0.999{0.712
5/1.0 10.44/0.30{0.5110.00{1.0 [0.0 (0.953(0.980}(0.281
Table 6 The obtained results for the test patterns of the
output data by SANNZ.
Il P1 P2 P3 P4 PS W3 TGC
111.0 |10.61{0.43(0.19(0.00/0.957(0.183
211.0 10.60(0.4310.19(0.00{0.957]0.183
311.0 (1.00{1.0010.87{1.00(0.955(0.818
411.0 {1.00(1.00]0.90(1.00(0.959]0.851
511.0 (0.92(0.81{0.3010.0010.957]0.271
Table 7 The obtained results for the test patterns of the

output data by S5ANN1l after removal of PSP.

I| P1 P2 P3 P4 PS PP PG WS WFP| TGC
1{1.0 [0.89|0.67(0.55/0.00{0.0 (0.0 (0.95410.0]0.344
211.0 ]0.7810.5410.54(0.00]0.0 |0.0 ]0.954(0.010.318
371.0 {1.00;{1.00|0.73]0.9910.0 (0.0 {0.952{0.0(0.710
411.0 |1.00(1.00}0.75]1.00{0.0 (0.0 {0.952{0.040.733
511.0 10.3910.2710.5010.0010.0 {0.0 (0.95510.010.268
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Table 8 Comparison between %MAS and number of iterations NI by

the two suggested networks with accuracy limit £ = 10°3
E 0 o SANN1 SANNZ

With PSP Without PSP

NI SMAS NI BMAS NI BMAS
1 0.9 0.6 3807 7.039 1241 7.196 2035 10.396
2 0.8 0.6 2947 7.754 1009 7.034 2223 10.254
e 0.6 0.5 1852 7.220 630 6.379 2828 9.682
4 0.5 0.7 2682 8.640 1076 6.302 3183 9.954
3 0.4 0.4 2319 6.154 495 6.762 2760 9.507
o] 0. 2 0.6 2218 6.639 513 7.108 2651 9.486
7 0.3 0.5 2232 6.234 492 6.911 2735 9.494
8 0.7 0.4 631 7.711 802 6.348 2468 2.697
2 0.8 0.2 592 7.537 922 6.173 2761 9.524
10 0.1 0.8 2248 6.956 502 7.294 2548 9.387

6. Conclusions

Agreeable output data for the optimal operation of hydrothermal
power system can  be obtained by using the neural-network
technology. ANNs are valid for the on-line operation and have the
capability to give the required data once these networks have
been trained regardless of the solution method which has been
applied.

The learning parameters have a significant influence on the
obtained results and computation time, therefore, several
different parameters must be taken into account to obtain
satisfied results. Suggested artificial neural networks SANNs
have been designed to obtain the required output data of the
optimal scheduling of the hydrothermal generation by introducing
of the decision variables of each plant and the load power in
each time interval. The data of the optimal operation of a
hydrothermal power system including or excluding a pump storage
plant can be obtained from the same suggested network with
acceptable wvalues of mean absolute error. The network must be

trained by the corresponding data for both situations.
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